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Adsorption on a periodically corrugated substrate

K. Rejmer and M. Napio´rkowski
Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, 00 681 Warszawa, Hoz˙a 69, Poland

~Received 14 January 2000!

Mean-field analysis of the effective interfacial Hamiltonian shows that with increasing temperature the
adsorption on a periodically corrugated substrate can proceed in two steps: first, there is the filling transition in
which the depressions of the substrate become partially or completely filled; then, there is the wetting transition
at which the substrate as a whole becomes covered with a macroscopically thick wetting layer. The actual order
and location of both transitions are related to the wetting properties of the corresponding planar substrate and
to the form of corrugation. Certain morphological properties of the liquid-vapor interface in the case of a
sawlike corrugated substrate are discussed analytically.

PACS number~s!: 68.45.Gd, 68.35.Md, 68.35.Rh
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I. INTRODUCTION

Although the wetting of homogeneous and planar s
strates is currently a relatively well understood phenome
@1–3#, its counterpart corresponding to the adsorption on c
rugated substrates still poses many questions which rem
unanswered in spite of much recent experimental and th
retical work @4–19# devoted to these systems. Different a
pects of wetting on a corrugated substrate, e.g., the orde
the wetting transition, the location of the wetting point on t
thermodynamic phase diagram, and the structure of
emerging liquid-vapor interface, have usually been refer
to the wetting properties of the corresponding planar s
strate, which indeed serves as the natural reference sys
However, recent work on the special type of nonplan
substrate—the infinitely extended wedgelike substrate@20–
23#—points at a novel type of transition characteristic f
this system. This is so-called filling transition which—in o
opinion—becomes also relevant in the case of adsorption
a periodically corrugated substrate. It takes place at the b
liquid-vapor coexistence and at a temperature that is lo
than the wetting temperature of the corresponding pla
substrate. In the course of the filling transition, the width
the wetting film becomes macroscopically thick in the cen
of the wedge and it remains thin far away from the wed
center; there the interface locally interacts with the pla
substrate only, which at the filling transition remains nonw

Our mean-field analysis of adsorption on a periodica
corrugated substrate aims at showing that the filling tra
tion mentioned above can be also relevant in this case
precedes the wetting transition@19#. Thus two kinds of tran-
sitions, i.e., the filling and the wetting transition, can
present in the scenario of adsorption on the corrugated
strate.

In Sec. II we introduce the system and present the th
modynamic analysis of the problem. It shows which prop
ties of the substrate’s shape are relevant for the filling tr
sition. We also comment on the phenomenological Wen
law @24,25# locating the wetting temperature for a corrugat
substrate. Section III contains the analysis of the adsorp
in the case when the corrugation of the substrate has
special sawlike form. This analysis is based on rather gen
considerations using the concept of the effective interfa
Hamiltonian. They not only allow us to extract informatio
PRE 621063-651X/2000/62~1!/588~9!/$15.00
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about the order of the filling and the wetting transitions, b
they also point out certain structural properties of the liqu
vapor interface. Section IV contains an analytic discussion
the above issues. In this case, the shape of the interface
be obtained explicitly and its scaling properties in differe
temperature regimes can be transparently presented. In
V we summarize our results.

II. THERMODYNAMIC DESCRIPTION

We consider a substrate which is periodically corruga
in the x direction and translationally invariant in they direc-
tion. Its shape is described by the functionz5b(x) with
period 2a, i.e., b(2a)5b(a). Moreover, we assume tha
b(2x)5b(x) and thatb(x) is monotonically increasing for
0,x,a; b(x) has the minimum atx50 and the maximum
at x5a. The space above the substrate is occupied by
inhomogeneous fluid and the thermodynamic conditions
chosen such that forz→` the bulk vapor is the stable ther
modynamic phase. Close to the substrate, due to its pre
ence for a liquid phase, a liquidlike layer is formed whic
separates the vapor from the substrate. The knowledge o
shape of the liquid-vapor interfacez5 f (x) and the width of
the liquidlike layer l (x)5 f (x)2b(x) as a function of the
thermodynamic state of the system allows one to discuss
possible filling and the wetting transition taking place in th
system. We do not put any constraints on the amoun
liquid adsorbed on the substrate. Such contraints might l
to the interfacial configurations which break the substr
symmetry@26#; this is not the case in our analysis.

In this section, we analyze the problem thermodynam
cally by considering macroscopic configurations of the int
face and evaluating the corresponding surface free ener
In order to make the notation consistent with that employ
later within the effective Hamiltonian approach~Secs. III and
IV !, we denote the vapor phase and the liquid phase
phasesa andb, respectively.

We assume that the substrate imposes its periodicity
the allowed interfacial configurations and thus our analysi
reduced to a single subtrate’s depression extending on
segment@2a,a#. Moreover, due to the substrate’s symme
b(x)5b(2x) it is enough to concentrate on the segme
@0,a#. One takes into account two types of competing int
facial configurations: the first corresponds to the partial fi
588 ©2000 The American Physical Society
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PRE 62 589ADSORPTION ON A PERIODICALLY CORRUGATED SUBSTRATE
ing of the depression, Fig. 1~a!, and the second correspond
to the interface located above or exactly at the top of
substrate, i.e.,f (x)>b(a), see Fig. 1~b!. The free energy of
the depression filled completely with the phasea serves as
the reference point. Then the excess surface free ene
corresponding to the above two cases have the follow
form:

DF1~x1!52x1sab1L~x1!~swb2swa!

5sab@2x12L~x1! cosu#, ~2.1!

DF25sab@2a2L~a!cosu#, ~2.2!

respectively.x1 denotes the value of the abscissa at wh
the planar segment of thea-b interface makes contact wit
the substrate, i.e.,f (x1)5b(x1). sab , swa , andswb are the
a-b, substrate-phasea, and substrate-phaseb surface ten-
sions, and

L~x1!5E
2x1

x1
dxA11bx

2~x! ~2.3!

FIG. 1. Schematic configurations of thea-b interface at the
depression extending forxP@2a,a#. x1 is the abscissa’s value a
which the interface makes contact with the substrate;c denotes the
actual contact angle.~a! The partial filling of the depression,~b! the
interface located above the substrate.
e

ies
g

h

is the length of the substrate-phaseb interface. In Eqs.~2.1!
and ~2.2!, the Young equation has been used andu denotes
the planar substrate contact angle.

The equilibrium interfacial configuration corresponds
the valuex̄1 of the contact point abscissa which minimiz
the excess free energy. It solves the following equation:

05DF1,x~ x̄1!52sab@12A11bx
2~ x̄1! cosu#

52sabS 12
cosu

cosc~ x̄1!
D , ~2.4!

wherec( x̄1) denotes the actual contact angle on the cor
gated substrate shown in Fig. 1~a!. Thus the surface free
energy has an extremum for such a value ofx̄1 that the
corresponding contact anglec( x̄1) becomes equal to the
contact angleu on the planar substrate. The actual minimu
is located by inspecting the second derivative of the exc
free energy,

DF1,xx~ x̄1!522sab

bx~ x̄1!bxx~ x̄1!

A11bx
2~ x̄1!

cosu. ~2.5!

For substrates under consideration, one hasbx.0 for 0,x

,a and the sign ofDF1,xx( x̄1) is determined by the sign o
bxx( x̄1), i.e., by the curvature of the substrate.x̄1 corre-
sponds to the excess free-energy minimum if the substra
convex at the corresponding pointx̄1 @i.e., bxx( x̄1),0 and
b(x) is concave atx̄1#. On the other hand, if the substrate
concave atx̄1 @i.e., bxx( x̄1).0], then the excess free energ
has a maximum. For an arbitrary substrate shapeb(x) with
several inflection points, there may be many competing eq
librium states leading to a rather complicated phase diagr

For periodic substrates with a single inflection pointxinf
P@0,a#, the situation is more transparent. An example
such a substrate is given byb(x)5a@12 cos(xp/a)# for
which one hasbx(0)5bx(a)50 andxinf5a/2. For an appro-
priate range of values of the contact angleu, the excess free
energy has both a maximum and a minimum located atxmax
and xmin , respectively. Upon increasing the temperatureu
decreases,xmax decreases, andxmin increases. The limiting
valueu0 such that foru,u0 these two extrema of the exces
free energy exist is determined by the shape of the subst
u05c(xinf). For temperatures belowT0 such thatu(T0)
5u0, the depression remains filled with the bulk phasea.
This case is called the empty depression andx̄150 . For T
.T0, the depression may be partially filled with~unstable in
the bulk! phaseb; x̄15xminP@xinf ,a#. The equilibrium con-
figuration is selected by the excess free-energy balance,
2. The transition from the empty to the partially filled co
figuration which takes place atTf is first-order. The equilib-
rium valuex̄1 changes discontinuously from 0 tox̄1 f , which
is the smallest value ofxmin such thatDF1( x̄1 f)<0. We call
it the filling transition. The corresponding valueu f of the
contact angle is given by
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cosu f5
2x̄1 f

L~ x̄1 f !
. ~2.6!

Upon further increase of the temperature,xmin increases to-
wardsa; this limiting value ofx̄1 at which the whole depres
sion is filled with the phaseb is achieved foru50, i.e., at
the planar substrate wetting temperatureTw . Still further in-
crease of the temperature does not change the excess
energy balance and the whole substrate remains covere
the b-like layer of growing width. However, the analysis o
this further growth is beyond the present thermodynamic
scription.

The above analysis shows that the very existence o
nontrivial filling transition depends substantially on the su
strate’s shape. If each depression is strictly concave@i.e.,
bxx(x).0,xP(2a,a)], then the thermodynamic argume
points at a nonexistence of the filling transition leading to
partially filled depression. For example, when the perio
piecewise concave substrate consists of the arcs of circle
radiusR, then

DF~x1!52Rsab@x1 /R2arcsin~x1 /R! cosu#, ~2.7!

see Fig. 3. Upon increasing the temperature, the depres
remains empty until the contact angle reaches the valueu f
such that cosuf5 sind/d, at which the whole depression be
comes filled with theb phase andx̄15a. In this case the
circle’s arc forming the depression is tangent to thex axis at
x50, andp22d denotes the angle between the two a
meeting atx5a. On the contrary, for a piecewise strict
convex substrate@i.e., bxx(x),0 for xP@2a,0) and x
P(0,a#], the filling of the depression starts at its center a
proceeds continuously upon increasing the temperature
to the pointx15a. For example, when the periodic piec
wise convex substrate consists of the arcs of circles
radiusR, then

FIG. 2. Plots of the excess free energyDF(x1) corresponding to
the substrate’s shapeb(x)5a@12 cos(px/a)# for different values of
the temperature. The curve in the middle corresponds to the
peratureT5Tf at which the first-order transition from the so-calle

empty depression, i.e.,x̄150, to a partially filled depression with

x̄15 x̄1 f,a takes place.
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DF~x1!52Rsab$x1 /R2@d2arcsin~sind2x1 /R!#cosu%,

~2.8!

see Fig. 4. In this case the tangent to each of the two ci
arcs forming the depression atxP@2a,a# is horizontal at
x56a, andp22d denotes the angle between the two a
meeting atx50. In this case the depression becomes co
pletely filled atu50, i.e., atT5Tw .

The above macroscopic discussion also sheds light on
phenomenological Wenzel criterion@24,25# locating the wet-
ting temperatureTr for a rough substrate. Accordingly, if on
compares two interfacial configurations corresponding to
depression either completely filled with thea phase~the so-
called empty depression! or completely filled with theb
phase, then equating their free energies leads to the foll
ing equation forTr :

-

FIG. 3. Schematic plots of the excess free energyDF(x1) cor-
responding to a piecewise concave substrate for different temp
tures. An example of suchDF(x1) is given in Eq.~2.7!. The curve
in the middle corresponds to the temperature at which the wh
depression becomes filled at the first-order filling transition.

FIG. 4. Schematic plots of the excess free energyDF(x1) cor-
responding to a piecewise convex substrate for different temp
tures. An example of suchDF(x1) is given in Eq.~2.8!. The filling
of the depression proceeds continuously and terminates at the
nar substrate wetting temperatureTw at which the whole depressio
becomes filled. This corresponds to the lower curve the minim
of which is located atx15a.
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PRE 62 591ADSORPTION ON A PERIODICALLY CORRUGATED SUBSTRATE
cosu~Tr !5
2a

L~a!
. ~2.9!

The inverse of the right-hand side of the above equatio
the so-called roughness factor which measures the rati
the actual corrugated surface area to its projection on
plane. Equation~2.9! determines—according to Wenzel
criterion—the wetting temperature of the rough substrate
compared to the planar substrate case, for whichu(Tw)50.
However, this phenomenological criterion disregards the p
tially filled configurations and the transitions leading
them, which may actually preempty the transition to a co
pletely filled depression. In addition, this criterion does n
distinguish transitions to the completely filled depression a
those to the state in which the interface is removed ma
scopically far away from the substrate as a whole. On
other hand, if one looks at the filling transition for an in
nitely extended wedge—which is the special limiting case
the substrates we consider here—then the filling transi
temperature is correctly given by Wenzel’s rule. The sa
holds true for the special kind of concave substrate wh
free energy is described by Eqs.~2.7!.

In the case of the periodic sawlike substrate, i.e.,b(x)
5uxucotw, wherew denotes half of the saw opening ang
the above thermodynamic arguments point at the probl
which need to be resolved at the more microscopic level.
excess free energy

DF~x1!52sabx1~12 cosu/sinw! ~2.10!

is a linear function ofx1. The positive values of the coeffi
cient (12 cosu/sinw) correspond to the empty depressi
and the negative values to the completely filled case. At

transition temperatureTw such that cosu(Tw)5 sinw, no x̄1

value is distinguished by the present macroscopic argum
This corresponds to a degenerate case in which each con

ration with x̄1P@0,a# has the same value of the surface fr
energy. One certainly needs a more microscopic approac
discuss this case and to distinguish between the diffe
interfacial configurations with the same surface energy. T
approach, in addition to the surface contributions to the f
energy, should involve the analysis of the line contributio
as well. The next section is devoted to this problem.

III. THE INTERFACIAL CONFIGURATIONS

In this section we analyze the interfacial configurations
the presence of the periodic saw-shaped substrate introd
above. We restrict our analysis to a single sectionx
P@2a,a# in which the substrate is described byz5b(x)
5uxucotw. Our mean-field approach is based on the effect
Hamiltonian description which has been rather successf
employed in discussing various interfacial problems@2,3,15–
19,22,23#.
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A. The effective Hamiltonian

The effective Hamiltonian has the following form:

H@ f #5E
2a

a

dxH sab

2 F S d f~x!

dx D 2

2cot2wG1
V„l ~x!…

sinw J ,

~3.1!

where the film thicknessl (x)5 f (x)2uxucotw is measured
along thez axis. The form of the effective potentialV( l )
which desribes the interaction of the interface with the s
strate@1–3,15–19,22# will be specified later depending o
the order of the wetting transition on the planar substrate
we want to refer to. The above form of the effective Ham
tonian is valid for a not too rough substrate, i.e., forw close
to p/2 or cos2 w!1.

The equilibrium interfacial configurationf̄ minimizes
H@ f # and solves the equation

~sinw!sab

d2 f̄ ~x!

dx2
5V8„ l̄ ~x!… ~3.2!

supplemented by the boundary conditionsf̄ 8(0)5 f̄ 8(a)50.
~As before, due to the symmetry of the problem, we rest
our analysis to the segment@0,a#.! Integrating Eq.~3.2!, one
obtains

sab

2
~sinw!F S d l̄

dx
D 2

2S d l̄

dx
D 2Ux50G5V„ l̄ ~x!…2V1 ,

~3.3!

where l̄ 15 l̄ (0) and V15V( l̄ 1). Since l̄ 8(01)5 l̄ 8(a2)
52cotw, it follows from Eq. ~3.3! that V( l̄ 1)5V( l̄ 2)5V1,
where l̄ 25 l̄ (a).

The equilibrium solution of Eq.~3.3! l̄ (x) fulfills the con-
straint

a5Asinw

2 E
l̄ 2

l̄ 1
dl@sab

21DV~ l !2sab
21DV11v~w!#21/2,

~3.4!

where DV( l )5V( l )2V( l p), DV15V12V( l p), and v(w)
5 1

2 ,cot2w sinw. l p is the equilibrium thickness of the wet
ting layer on the planar substrate and corresponds to the
bal minimum ofV( l ). Equation~3.4! together with the con-
dition V( l̄ 1)5V( l̄ 2)5V1 allows one to find the pair (l̄ 1 , l̄ 2)
which characterizes the equilibrium interfacial configuratio
see Figs. 5 and 6.

B. The free-energy decomposition

The free energy of the system is obtained from the Ham
tonian in Eq.~3.1! evaluated at the equilibrium interfacia
configurationf̄ :
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592 PRE 62K. REJMER AND M. NAPIÓRKOWSKI
H@ f̄ #5
2asab

sinw
@sab

21DV12v~w!#12sabA 2

sinw

3E
l̄ 2

l̄ 1
dl$Asab

21DV~ l !2sab
21DV11v~w!

2Av~w!%. ~3.5!

Our purpose is to extract the line and the surface contr
tions to the free energy in Eq.~3.5! in the limit of largea and
to discuss their nonanalyticities corresponding to the tra
tions taking place in the system. This can be—at le
partially—achieved via the graphical analyses presented
low.

Figures 5 and 6 display the potential differen
sab

21DV( l ) in the case of the first-order@Figs. 5~a! and 6~a!#

FIG. 5. The shape of the effective interface potentialsab
21DV( l )

for T,Tw in the case of the first-order wetting transition on t
corresponding planar substrate~a!, and in the case of the continuou
wetting transition on the corresponding planar substrate~b!. The
dashed lines denote the functionv(w), the dotted lines denote

sab
21DV1 . l̄ 1 and l̄ 2 are the equilibrium values of the width of th

absorbed layer atx50 andx5a, respectively. 12 cosu is the lim-
iting value of sab

21DV( l ) for l→` and is denoted by thin dashe
lines. sab

21DV( l p)50; the value ofl p which gives the equilibrium
width of the wetting layer on the corresponding planar substrat
not marked on this figure. The thin-dashed line approaches
dashed line forT↗Tw .
-

i-
st
e-

and continuous@Figs. 5~b! and 6~b!# transitions. Figures 5~a!
and 5~b! correspond to cosQ, sinw, i.e., T,Tw , where
u(Tw)5(p/2)2w. Tw is thus identified as the filling tem
perature for a wedge with the opening angle 2w @22#. Figures
6~a! and 6~b! correspond toT.Tw . The dotted line repre-
sentssab

21DV1; its intersections with the plot ofsab
21DV( l )

determine, together with Eq.~3.4!, the equilibrium values of
l 1 and l 2.

We start with the first-order transition case forT,Tw

@Fig. 5~a!# and consider the special limita→` in which the
integral on the right-hand side~rhs! of Eq. ~3.4! diverges.
This divergence occurs either because the integrand dive
or because the upper limitl̄ 1 of integration in Eq.~3.4! di-
verges. ForT,Tw , only the first possibility can be realized
it happens forsab

21DV1↗v(w). Then the second term on th
rhs of Eq.~3.5! remains finite. The first term is a product o

is
e

FIG. 6. The shape of the effective interface potentialsab
21DV( l )

for T.Tw in the case of the first-order wetting transition on t
corresponding planar substrate~a!, and in the case of the continuou
wetting transition on the corresponding planar substrate~b!. The
notation is the same as in Fig. 5. In the case of the first-or

wetting, there exist two solutions described in the text as (l̃ 1 , l̃ 2)

and (l̄ 1 , l̄ 2). For clarity reasons onlyl̃ 1 is marked on~a!; l̃ 2 prac-

tically coincides withl̄ 2. For the same reasons we have not plott

separately horizontal dotted lines corresponding toDṼ1 and DV1,
although they differ in values. ForT↘Tw the thin-dashed line ap

proaches the asymptote 12 cosu while l̄ 1→`.
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PRE 62 593ADSORPTION ON A PERIODICALLY CORRUGATED SUBSTRATE
two factors; the first factor grows linearly witha and the
second one decreases to zero. Thus the first term give
contribution to the surface free energy; both terms contrib
to the line free energy. It is clear from Fig. 5~b! that similar
behavior will be observed for the second-order transition
well.

The situation changes forT.Tw , Figs. 6~a! and 6~b!. In
the case of the first-order transition@Fig. 6~a!#, there is a
competition between two solutions corresponding to (l̄ 1 , l̄ 2)
and (l̃ 1 , l̃ 2). Note that since both solutions fulfill the con
straint given in Eq.~3.4!, the values ofDV( l̄ 1)5DV( l̄ 2) and
DV( l̃ 1)5DV( l̃ 2) denoted asDV1 and DṼ1, respectively,
are different. The solution (l̃ 1 , l̃ 2) and the corresponding
free energy share the features discussed previously for
caseT<Tw anda→`. In particular, the free energy contain
only the line contribution. The solution (l̄ 1 , l̄ 2) and the cor-
responding free energy behave differently; in this case
divergence of the integral on the rhs of Eq.~3.4! is provided
by the diverging upper limit of integration. The first term o
the rhs of Eq.~3.5! can be rewritten@up to the (p/22w)2

terms# as

2asabH 1

sinw
@sab

21DV12~12 cosu!#1@12 cosu/sinw#J .

~3.6!

Thus for largea the first term in the above expression cea
to be linear ina while the second term remains negative a
proportional toa. The integrand in the second term on t
rhs of Eq. ~3.5! also remains finite in this limit. ForT
.Tw , the free energy corresponding to the solution (l̄ 1 , l̄ 2)
contains an additionalnegativesurface contribution. Due to
this term, the solution (l̄ 1 , l̄ 2) corresponds to the actual equ
librium configuration. Since both solutions (l̄ 1 , l̄ 2) and
( l̃ 1 , l̃ 2) correspond to the same value of the parametera, one
hasDṼ1.DV1. For a certain range of not too smalla values,
the differenceH@ f̃ #2H@ f̄ # may change sign depending o
the temperature. This marks the existence of the filling te
peratureTw(a) such thatTw(a).Tw(`)5Tw , at which the
transition between the two solutions takes place. The dif
enceTw(a)2Tw decreases fora→`; this behavior may be
looked upon as the analog of the Kelvin law for the capilla
condensation problem. In order to determine thea depen-
dence of Tw(a)2Tw , one has to perform the mode
dependent numerical analysis, which is postponed to fu
publication. A similar kind of qualitative analysis shows th
in the opposite limit, i.e., fora→0 one hasTw(a)→Tw . For
small enough values of parametera, the (l̄ 1 , l̄ 2) solution
ceases to exist and only the solution (l̃ 1 , l̃ 2) remains. There
is no filling transition in this case.

For a continuous transition, Fig. 6~b!, there is only one
solution (l̄ 1 , l̄ 2). The corresponding free energy contains
largea the negative surface contribution similarly as for t
first-order case discussed above.

The above results agree qualitatively with the conclusi
of our thermodynamic analysis in Sec. II in the case of
first-order transition. AtT5Tw , the surface contributions to
the free energy are nonanalytical. They are given
no
te
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(2a/sinw)swa for T<Tw and by (2a/sinw)@swa1sab(sinw
2 cosQ)# for T.Tw , see Eq.~2.10!. Now we see that also
the line contribution which is absent in the thermodynam
analysis turns out to be nonanalytical atT5Tw(a). Thus to
discuss the line contributions which determine—amo
others—the interfacial shape, one must go beyond the t
modynamic analysis. This will be done in Sec. IV.

C. The wetting transition

In order to discuss the wetting transition, it is necessary
compare the free energyF@ f̄ # corresponding to the finite
solution with the free energyF` corresponding to the inter
face removed infinitely far away from the substrate. Th
difference is equal to

F@ f̄ #2F`5E
2a

a

dxF1

2
sabS d f

dxD
2

1
v~ l !

sinw G , ~3.7!

wherev( l )5V( l )2swb2sab . It can be rewritten with the
help of Eq.~3.3! as

F@ f̄ #2F`5
2a

sinw
v~ l̄ 1!12sabA 2

sinw

3E
l̄ 2

l̄ 1
dl$Asab

21V~ l !2sab
21V~ l̄ 1!1v~w!

2Av~w!%. ~3.8!

In the case of the first-order potentialv( l ), both contribu-
tions to the free-energy difference in Eq.~3.7! are positive at
Tw , which means that the infinite solution is the stable o
At Tw both contributions to the free-energy difference in E
~3.8! are negative and so the finite solution is the stable o
Thus the wetting transition temperatureTw(a,w) is shifted
from Tw towardsTw . The magnitude of this shift depends o
parametersa andw, and the following inequality holds:

Tw,Tw~a,w!,Tw . ~3.9!

The above result—although derived for the saw-sha
substrate—should also hold for the first-order transitions
other types of periodic and weakly corrugated substrates

One should also pay attention to the possibility that
first-order wetting transition on the planar substrate tu
into critical filling on the corrugated substrate. This happe
for a ‘‘strongly’’ corrugated substrate so that the filling tem
peratureTw(a) lies below the spinodal temperatureTs at
which the potential barrier inv( l ) disappears. The presenc
of this mechanism leading to the change of the order of
transition—which was pointed out in@23# in the context of
adsorption on the wedge-shaped substrate—depends o
actual form of the effective potentialv( l ). For certain mod-
els of v( l ), it may also be realized in the case of adsorpti
on the saw-shaped substrate.

The above reasoning is not valid for the effective pote
tial V( l ) exhibiting the continuous transition. The continuo
wetting occurs at the same temperature as for the planar c
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When T↗Tw , then l̄ 2 , l̄ 1 ,l p increase indefinitely and
v( l p)→0. As a consequence, one can neglect the pote
terms in Eq.~3.4! and derive the relation

a'~ l̄ 12 l̄ 2!tanw. ~3.10!

This relation becomes exact atT5Tw . At this temperature
the interface is flat and situated infinitely far away from t
substrate.

IV. ANALYTIC RESULTS FOR CONTINUOUS FILLING

In this section we discuss the case when the effec
potentialV( l ) corresponds to the critical wetting on the pl
nar substrate,

V~ l !5swb1sab1W0t exp~2 l /j!1U0 exp~22l /j!,
~4.1!

where the parametert<0 measures the distance from th
planar substrate wetting pointtw50, and the constant
W0 ,U0 are positive. The solution of Eq.~3.2! has the follow-
ing form:

l̄ ~x!5 l 01j ln@11A exp~lx!1B exp~2lx!#, ~4.2!

where the constantsl 0 ,l,A,B are determined by requiring
that l̄ (x) fulfills Eq. ~3.2! and the boundary condition
l̄ 8(01)5 l̄ 8(a2)52cotw. The solutionl̄ (x) can be conve-
niently rewritten using the following dimensionless variab
y5lj/cotw, t5t/tw , tw52A2U0sabW0

22 sin21 w cosw,

ā5a cotw/j, x5xcotw/j. ā measures the dimensionle
depth of the depression at its center andtw,0 denotes a
characteristic temperature for the adsorption on the saw
substrate. For large opening angles considered in this pa
tw coincides with the wedge filling temperature up to t
terms 0(p/22w)2. t measures the dimensionless tempe
ture: t.1 corresponds to temperature below the characte
tic temperaturetw . Then

~y221!~y22t2!5t2cosh22~yā/2!, ~4.3!

l̄ ~x!5 l 01j lnF12
y cosh~yx!2 sinh~yx!

~y221! sinh~yā!

1
y cosh@y~x2ā!#2 sinh@y~x2ā!#

~y221! sinh~yā!
G , ~4.4!

and

l 05 l p22j lnS y

t D , ~4.5!

where l p52j ln(t coswAsab /2U0 sinw). The solutions of
Eq. ~4.3!—which serve as the input to Eq.~4.4!—are param-
etrized by the temperaturet and the geometry of the sub
strate, i.e.,a andw. The shape of the emerging interface
shown in Fig. 7 for different temperatures. Figure 8 showsl̄ 1
ial

e

e
er,

-
s-

and l̄ 2 as functions of the reduced temperature; especi

pronounced is the sharp increase ofl̄ 1 upon crossing the
wedge filling temperaturet51. This means that the trace o
the filling transition chracteristic for the adsorption in th
wedge is also present for the saw-shaped substrate, alth
not in such a singular form as for the wedge. Also the wid
of the adsorbed layer atx5a, i.e., l̄ 2, does not exhibit any
nonanalytic behavior neart51; see Fig. 8. A straightforward
calculation shows that the free energyF@ f̄ # evaluated att
51 tends to a constant fora→`; under the same condition
the first derivative ofF@ f̄ # with respect to the temperatur
grows linearly witha. This behavior of the free energy in th
limit a→` is compatible with our previous mean-field re

FIG. 7. The shapes of thea-b interface for different dimension-
less temperatures approaching the temperaturet51, which corre-
sponds to the critical filling transition on the saw-shaped substr
The three curves, in increasing order, correspond to the temp
turest51.2, t51, andt50.9, respectively.

FIG. 8. The widths of the adsorbed layerl̄ 1 and l̄ 2 as functions

of the dimensionless temperaturet. For t↘0 both l̄ 1 and l̄ 2 tend to
` with their difference kept constant and equal toa; in this figure

ā510.
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sults obtained for the wedge@22#. On the other hand, upo
approaching the planar substrate wetting temperaturet50,
both l̄ 1 and l̄ 2 grow indefinitely, which reflects the wettin
transition taking place on this periodically corrugated su
strate.

An interesting insight into the structure of the interfac
profile f̄ (x) can be obtained by analyzing the scaling pro
erties of l̄ (x) in the limit of largeā for different temperature
regimes.

It follows from Eq. ~4.4! that the film thicknessesl̄ 1 and
l̄ 2 are given by

l̄ 15 l 01j lnF yFy1tanhS yā

2
D G

~y221!
G ~4.6!

and

l̄ 25 l 01j lnF yFy2tanhS yā

2
D G

~y221!
G , ~4.7!

where the value of parametery(t,ā) is obtained by solving
Eq. ~4.3!. After substituting the relevant solutions into E
~4.4!, one obtains

l̄ 1' l p15
j lnS t

t21D for t.1

āj/2 for t51

āj1j lnS 12t2

2 D for t,1,

~4.8!

where the expressions in Eq.~4.8! hold for tā exp(2tā)
!(t221), (t.1) and tā exp(2ā)!(12t2), (t,1), respec-
tively. Thus forā→` the scaling behavior ofl̄ 1 depends on
the chosen temperature regime. Fort.1, the value of l̄ 1
approaches the width of the adsorbed layer in the wedge.
t<1, the value ofl̄ 1 grows linearly withā; the slope of this
linear increase is12 for t51 and 1 fort,1. This change of
slope is visible in Fig. 9, which illustrates the scaling pro
erties of l̄ 1 for different temperatures.

The scaling properties ofl̄ 2 are different from those ofl̄ 1.
For t→0, l̄ 2→ l p and l p itself increases logarithmically
Thus fort→0, both l̄ 1 and l̄ 2 approachl p ; l̄ 12 l̄ 2→jā, i.e.,
f̄ (0)2 f̄ (a)→0. The interface becomes flat and the syst
undergoes the continuous wetting transition.

V. SUMMARY

Our main conclusion is that the complete scenario of
sorption on a corrugated substrate contains both the fil
and the wetting transition. The filling transition correspon
to either partial or complete filling of the substrate’s depr
sions. Then follows the wetting transition at which the who
-

l
-

or

-

-
g
s
-

substrate becomes covered by a macroscopically thick la
of the adsorbed phase. The detailed scenario of the fil
transition depends on the substrate’s convexity propert
Thermodynamic considerations show that for periodic s
strates which are piecewise convex, i.e., convex except
isolated points at which the substrate shape is nonanal
one has continuous growth of the adsorbed phase whic
with increasing temperature—fills the substrate’s depress
starting from its bottom and terminating at its top. The su
strate’s top position, i.e.,z5b(a), is reached by thea-b
interface at the wetting temperatureTw . On the other hand
for periodic substrates which are piecewise concave, one
discontinuous growth. Thea-b interface jumps to the posi
tion at the top of the substrate at the temperatureTf,Tw .
For periodic substrate shapes likeb(x)5a@12 cos(px/a)#,
which within each section contain both concave and con
parts, the filling scenario corresponds to the jump of the
terface to the position where it makes contact with the c
vex part of the substrate. Upon further increase of the te
perature, this jump is then followed by a continuous grow
of the interfacial position until the whole depression b
comes filled.

An interesting situation appears when—within each s
tion of the substrate—there are more than one inflect
point. This corresponds to varying convexity properties
the substrate, which are then reflected in the course of
filling transition. It consists of jumps followed by continuou
growth after which another jump comes, etc. This high
nonuniversal scenario requires a detailed analysis, whic
postponed to a future publication.

As far as the wetting transition is concerned, we arg
that its order is the same as in the case of the correspon
planar substrate. The mesoscopic part of our analysis is
cused on adsorption on a sawlike substrate, which is
borderline case between piecewise convex and piece
concave substrate shapes. When the substrate is chos
such a way that in the planar case it corresponds to the c
cal wetting, then the filling transition can be discussed
much extent analytically. Especially, we analyze the beh
ior of the interfacial shape in the vicinity of the wedge-fillin

FIG. 9. The scaling behavior ofl̄ 15 f̄ (0) as a function ofa for

different temperatures in the vicinity oft51. Fort51, l̄ 1;ā/2; for

t,1, l̄ 1;ā. For t.1, l̄ 1 approaches the value corresponding to t
adsorption in the wedge.
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temperatureTw and we point at a very sharp but smoo
change of the interfacial shape near this temperature.
also derive the scaling behavior ofl̄ 1 with respect to increas
ing depression size for temperatures below and above
special temperature.

When the substrate is chosen such that in the planar
it corresponds to the first-order wetting, then we show t
the filling transition on the periodically corrugated substr
is also first-order but shifted to a higher temperatureTw(a):
Tw<Tw(a). This scenario holds unless it is preempted b
continuous adsorption, which may take place on the s
shaped substrate when the filling transition tempera
Tw(a) is shifted below the spinodal temperatureTs . We also
es
si
ti

et
y,
,

tt.

v.

-

e

is

se
t

e

a
-

re

observe that it is actually the line contribution to the fr
energy that becomes nonanalytic atTw(a). On the contrary,
the shift of the saw-shaped substrate wetting tempera
Tw(a,w) with respect to the wedge wetting temperatureTw
is such that Tw(a,w),Tw . Thus one hasTw,Tw(a)
,Tw(a,w),Tw .
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