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Adsorption on a periodically corrugated substrate
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Mean-field analysis of the effective interfacial Hamiltonian shows that with increasing temperature the
adsorption on a periodically corrugated substrate can proceed in two steps: first, there is the filling transition in
which the depressions of the substrate become partially or completely filled; then, there is the wetting transition
at which the substrate as a whole becomes covered with a macroscopically thick wetting layer. The actual order
and location of both transitions are related to the wetting properties of the corresponding planar substrate and
to the form of corrugation. Certain morphological properties of the liquid-vapor interface in the case of a
sawlike corrugated substrate are discussed analytically.

PACS numbgs): 68.45.Gd, 68.35.Md, 68.35.Rh

I. INTRODUCTION about the order of the filling and the wetting transitions, but
they also point out certain structural properties of the liquid-
Although the wetting of homogeneous and planar subvapor interface. Section IV contains an analytic discussion of
strates is currently a relatively well understood phenomenoithe above issues. In this case, the shape of the interface can
[1-3], its counterpart corresponding to the adsorption on corbe obtained explicitly and its scaling properties in different
rugated substrates still poses many questions which remaf§mperature regimes can be transparently presented. In Sec.
unanswered in spite of much recent experimental and theo/ We summarize our results.
retical work[4—19] devoted to these systems. Different as-
pects of wetting on a corrugated substrate, e.g., the order of Il. THERMODYNAMIC DESCRIPTION
the wetting transition, the location of the wetting point on the
thermodynamic phase diagram, and the structure of the We consider a substrate which is periodically corrugated
emerging liquid-vapor interface, have usually been referredn thex direction and translationally invariant in thyedirec-
to the wetting properties of the corresponding planar subtion. Its shape is described by the functiarb(x) with
strate, which indeed serves as the natural reference systefgriod 2a, i.e.,, b(—a)=b(a). Moreover, we assume that
However, recent work on the special type of nonplana®(—X)=b(x) and thatb(x) is monotonically increasing for
substrate—the infinitely extended wedgelike substfage- 0<x<a; b(x) has the minimum at=0 and the maximum
23]—points at a novel type of transition characteristic forat x=a. The space above the substrate is occupied by the
this system. This is so-called filling transition which—in our inhomogeneous fluid and the thermodynamic conditions are
opinion—becomes also relevant in the case of adsorption oghosen such that far— o the bulk vapor is the stable ther-
a periodically corrugated substrate. It takes place at the bulkiodynamic phase. Close to the substrate, due to its prefer-
liquid-vapor coexistence and at a temperature that is loweence for a liquid phase, a liquidlike layer is formed which
than the wetting temperature of the corresponding planageparates the vapor from the substrate. The knowledge of the
substrate. In the course of the filling transition, the width ofshape of the liquid-vapor interfaze= f(x) and the width of
the wetting film becomes macroscopically thick in the centetthe liquidlike layer|(x)=f(x)—b(x) as a function of the
of the wedge and it remains thin far away from the wedgethermodynamic state of the system allows one to discuss the
center; there the interface locally interacts with the planaipossible filling and the wetting transition taking place in this
substrate only, which at the filling transition remains nonwet.system. We do not put any constraints on the amount of
Our mean-field analysis of adsorption on a periodicallyliquid adsorbed on the substrate. Such contraints might lead
corrugated substrate aims at showing that the filling transito the interfacial configurations which break the substrate
tion mentioned above can be also relevant in this case argymmetry[26]; this is not the case in our analysis.
precedes the wetting transitiph9]. Thus two kinds of tran- In this section, we analyze the problem thermodynami-
sitions, i.e., the filling and the wetting transition, can becally by considering macroscopic configurations of the inter-
present in the scenario of adsorption on the corrugated sulface and evaluating the corresponding surface free energies.
strate. In order to make the notation consistent with that employed
In Sec. Il we introduce the system and present the therater within the effective Hamiltonian approat®ecs. Ill and
modynamic analysis of the problem. It shows which properdV), we denote the vapor phase and the liquid phase as
ties of the substrate’s shape are relevant for the filling tranphasesx and 3, respectively.
sition. We also comment on the phenomenological Wenzel We assume that the substrate imposes its periodicity on
law [24,25 locating the wetting temperature for a corrugatedthe allowed interfacial configurations and thus our analysis is
substrate. Section Il contains the analysis of the adsorptioreduced to a single subtrate’s depression extending on the
in the case when the corrugation of the substrate has theegmenf —a,a]. Moreover, due to the substrate’s symmetry
special sawlike form. This analysis is based on rather gener&l(x) =b(—Xx) it is enough to concentrate on the segment
considerations using the concept of the effective interfacial0,a]. One takes into account two types of competing inter-
Hamiltonian. They not only allow us to extract information facial configurations: the first corresponds to the partial fill-
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FIG. 1. Schematic configurations of the-B interface at the
depression extending fore[ —a,a]. x; is the abscissa’s value at
which the interface makes contact with the substrgtdenotes the
actual contact angl€a) The partial filling of the depressioit)) the
interface located above the substrate.

ing of the depression, Fig.(d, and the second corresponds
to the interface located above or exactly at the top of the

substrate, i.ef(x)=b(a), see Fig. ). The free energy of
the depression filled completely with the phaseserves as

form:

AF1(X1)=2X10 45+ L(X1) (0w Owa)

=044 2X1—L(X4) cOSH], (2.2

AF,=0,42a—L(a)cosd], (2.2
respectively.x,
the planar segment of the-B interface makes contact with
the substrate, i.ef(x;) =b(X1). 045, Owe, andoyg are the
a-f3, substrate-phase, and substrate-phage surface ten-
sions, and

(2.3

L(xq)= fi dxy/1+ bxi(x)

ADSORPTION ON A PERIODICALLY CORRUGATED SUBSTRATE

denotes the value of the abscissa at which

589

is the length of the substrate-phg8énterface. In Eqs(2.1)
and(2.2), the Young equation has been used @ndenotes
the planar substrate contact angle.

The equilibrium interfacial configuration corresponds to
the valuex, of the contact point abscissa which minimizes
the excess free energy. It solves the following equation:

0=AF;,(X1)=20,4[1— V1+b%(x;) cosd]

cosé
) , (2.9

=2(Taﬁ 1— E——

CoSy(X1)
where z,/;(;l) denotes the actual contact angle on the corru-
gated substrate shown in Fig(al Thus the surface free
energy has an extremum for such a valuexgfthat the
corresponding contact anglé(x;) becomes equal to the
contact angled on the planar substrate. The actual minimum
is located by inspecting the second derivative of the excess
free energy,

by(X1) B(X1)
cosé

* 1+020x)

For substrates under consideration, one nas0 for 0<x
<a and the sign oAF,,(x;) is determined by the sign of

b,«(X1), i.e., by the curvature of the substrate. corre-
sponds to the excess free-energy minimum if the substrate is
convex at the corresponding poirt [i.e., by,(X;)<0 and
b(x) is concave ak;]. On the other hand, if the substrate is
concave ak, [i.e., b,,(X;)>0], then the excess free energy
has a maximum. For an arbitrary substrate shapg with
several inflection points, there may be many competing equi-
librium states leading to a rather complicated phase diagram.
For periodic substrates with a single inflection point
e[0,a], the situation is more transparent. An example of
such a substrate is given By(x)=a[1l— coskmn/a)] for

AFl,xx(;l) =—20,

(2.9

the reference point. Then the excess surface free energi(\évsh'Ch one ha,(0)=Db,(a) =0 andxiy=al2. For an appro-

corresponding to the above two cases have the followingg

riate range of values of the contact angleghe excess free
nergy has both a maximum and a minimum locatexd,af

and X, respectively. Upon increasing the temperatute,
decreases . decreases, anxl,,, increases. The limiting
value 6, such that ford< 6, these two extrema of the excess
free energy exist is determined by the shape of the substrate:
0o=¥(Xins). For temperatures below, such thaté(T)

= 0,, the depression remains filled with the bulk phase
This case is called the empty depression ape0 . ForT

>T,, the depression may be partially filled wighnstable in

the bulk phaseB; x;=Xpmin€ [ Xinf,&]. The equilibrium con-
figuration is selected by the excess free-energy balance, Fig.
2. The transition from the empty to the partially filled con-

figuration which takes place &t is first-order. The equilib-

rium value;l changes discontinuously from Oigf , Which
is the smallest value of,;, such thatAF;(x;;)<0. We call
it the filling transition. The corresponding valug of the
contact angle is given by
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FIG. 3. Schematic plots of the excess free enek@y(x;) cor-

FIG. 2. Plots of the excess free enetylf (x;) corresponding to . . . ;
the substrate’s shaiéx) = a[ 1— cosrx/a)] for different values of responding to a piecewise concave substrate for different tempera-
tures. An example of suchF(x,) is given in Eq.(2.7). The curve

the temperature. The curve in the middle corresponds to the ten}h the middle corresponds to the temperature at which the whole
peratureT =T; at which the first-order transition from the so-called p P

Lo . ! . . depression becomes filled at the first-order filling transition.
empty depression, i.ex;=0, to a partially filled depression with
X1=Xys<a takes place.

AF(X1) =2Rac ,4{x1/R—[ §—arcsin(sin 6—x, /R)|cosb},

Xt (2.9
CcoSfi=—=. (2.6
L(X1¢) see Fig. 4. In this case the tangent to each of the two circle
arcs forming the depression gt [ —a,a] is horizontal at
Upon further increase of the temperatuxg,, increases to- x=*a, and7—24 denotes the angle between the two arcs
wardsa; this limiting value ofx; at which the whole depres- Mmeeting atx=0. In this case the depression becomes com-
sion is filled with the phasg is achieved ford=0, i.e., at Pletely filled at6=0, i.e., atT=T,,.
the planar substrate wetting temperatiije Still further in- The above macroscopic discussion also sheds light on the
crease of the temperature does not change the excess fréélenomenological Wenzel criteri¢@4,29 locating the wet-
energy balance and the whole substrate remains covered g temperaturd, for a rough substrate. Accordingly, if one
the B-like layer of growing width. However, the analysis of compares two interfacial configurations corresponding to the
this further growth is beyond the present thermodynamic dedepression either completely filled with thephase(the so-
scription. called empty depressipror completely filled with theg
The above analysis shows that the very existence of &hase, then equating their free energies leads to the follow-
nontrivial filling transition depends substantially on the sub-ing equation forT, :
strate’s shape. If each depression is strictly condase,
b,x(X)>0xe (—a,a)], then the thermodynamic argument
points at a honexistence of the filling transition leading to a
partially filled depression. For example, when the periodic
piecewise concave substrate consists of the arcs of circles of
radiusR, then

85

xat 1

AF(x1) =2Ra 5[ X, /R—arcsir(x, /R) cost], (2.7)

see Fig. 3. Upon increasing the temperature, the depression
remains empty until the contact angle reaches the véjue
such that co#;= sind/ 4, at which the whole depression be-

comes filled with theB phase andk;=a. In this case the
circle’s arc forming the depression is tangent to trexis at
x=0, and7—26 denotes the angle between the two arcs
meeting atx=a. Qn the contrary, for a piecewise strictly FIG. 4. Schematic plots of the excess free enek@y(x,) cor-
convex substratdi.e., b(x)<0 for xe[-a,0) and X responding to a piecewise convex substrate for different tempera-
€ (0a]], the filling of the depression starts at its center andyres. An example of suchF(x,) is given in Eq.(2.8). The filling
proceeds continuously upon increasing the temperature U the depression proceeds continuously and terminates at the pla-
to the pointx;=a. For example, when the periodic piece- nar substrate wetting temperatdfg at which the whole depression
wise convex substrate consists of the arcs of circles obecomes filled. This corresponds to the lower curve the minimum
radiusR, then of which is located ak,=a.
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2a A. The effective Hamiltonian
Cos6(Tr)= L(a)’ 2.9 The effective Hamiltonian has the following form:
a  [oa[[df(x))? V(I(x))
The inverse of the right-hand side of the above equation is H[f]=ﬁadx 2 || Tax | Tt ging |

the so-called roughness factor which measures the ratio of 3.1)
the actual corrugated surface area to its projection on the

plane. Equation(2.9 determines—according to Wenzel's i , )
criterion—the wetting temperature of the rough substrate ag/here the f"”? thickness(x) =1(x) - |X|C9t‘P IS megsured
compared to the planar substrate case, for wisich,) = 0. along thez axis. The form of the effective potenti&(l)

However, this phenomenological criterion disregards the parWh'Ch desribes the interaction of the interface with the sub-

tially filled configurations and the transitions leading to strate[1-3,15-19,2P will be specified later depending on

th hich tuall tv the t ition t the order of the wetting transition on the planar substrate that
em, which may actually preemply the transition 10 a Comy, . \ant 1o refer to. The above form of the effective Hamil-

p!etgly f.'"ed deprgssmn. In addition, th|§ criterion do'es NO%qnian is valid for a not too rough substrate, i.e., foclose
distinguish transitions to the completely filled depression and, .5 o co2 o<1

those to the state in which the interface is removed macro- —_ . . . i

. The equilibrium interfacial configuratiorf minimizes
scopically far away from the substrate as a whole. On th [f] and solves the equation
other hand, if one looks at the filling transition for an infi- q
nitely extended wedge—which is the special limiting case of

the substrates we consider here—then the filling transition d%f(x)
temperature is correctly given by Wenzel's rule. The same (Sin¢)gaﬁ_:V'(T(x)) (3.2
holds true for the special kind of concave substrate whose X

free energy is described by Eq&.7).

In the case of the periodic sawlike substrate-, ibe x) supplemented by the boundary conditio‘_h$0)=?(a)=0.
= |x|cote, where ¢ denotes half of the saw opening angle, (o5 hefore, due to the symmetry of the problem, we restrict

the above thermodynamic arguments point at the problems,,, analysis to the segmef@,a].) Integrating Eq(3.2), one
which need to be resolved at the more microscopic level. Thgpiains

dr\? (dr\?

dx/ \dx

excess free energy
is a linear function of;. The positive values of the coeffi- 100 T,=1(0) and V,;=V(I,). Since 1'(0%)=1"(a")
cient (1— cosé/sing) correspond to the empty depression _ : ' TN Ty
and the negative values to the completely filled case. At the cote, it follows from Eq.(3.3) thatV(l4) =V(I2) =Vy,
transition temperatur@, such that co$(T,)= sing, no x; wherel,=1(a).

¢ ¢/ ’ 1 iy ; 77 .
value is distinguished by the present macroscopic argument, 1€ €quilibrium solution of E¢(3.3) I (x) fulfills the con-

This corresponds to a degenerate case in which each configﬁt-ralnt

ration withx, e[0,a] has the same value of the surface free

energy. One certainly needs a more microscopic approach to sing (1,
discuss this case and to distinguish between the different a= \/T Cdi[o,zAV() — oAV +u ()]
interfacial configurations with the same surface energy. This 2 (3.
approach, in addition to the surface contributions to the free '
energy, should involve the analysis of the line contributions

as well. The next section is devoted to this problem. where AV(1)=V()=V(l;), AV;=V;-V(l,), and v(¢)
=1 cofesine. | is the equilibrium thickness of the wet-

ting layer on the planar substrate and corresponds to the glo-
bal minimum ofV(l). Equation(3.4) together with the con-
dition V(I 1)=V(I,) =V, allows one to find the pairlg,I,)

In this section we analyze the interfacial configurations inwhich characterizes the equilibrium interfacial configuration,
the presence of the periodic saw-shaped substrate introducede Figs. 5 and 6.
above. We restrict our analysis to a single section
e[—a,a] in which the substrate is described by b(x)
=|x|cote. Our mean-field approach is based on the effective
Hamiltonian description which has been rather successfully The free energy of the system is obtained from the Hamil-
emp|0yed in discussing various interfacial prob|d:m§,15_ tonian in Eq_(31) evaluated at the equilibrium interfacial
19,22,23. configurationf :

Tb (sin)
AF(X1) =20 ,5X,(1— cosbl/sine) (2.10 2

=V(I(x))— V4,
(3.3

x=0

Ill. THE INTERFACIAL CONFIGURATIONS

B. The free-energy decomposition
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FIG. 5. The shape of the effective interface poterﬁigﬁAV(l) FIG. 6. The shape of the effective interface potenﬁg&AV(l)

for T<T, in the case of the first-order wetting transition on the for T>T in the case of the first-order wetting transition on the
corresponding planar substrd#, and in the case of the continuous corresponding planar substrdtg, and in the case of the continuous
wetting transition on the corresponding planar substtbje The  wetting transition on the corresponding planar substtbje The
dashed lines denote the functiar(¢), the dotted lines denote notation is the same as in Fig. 5. In the case of the first-order
a;;Avl. I, and1, are the equilibrium values of the width of the wetting, there exist two solutions described in the textTas ()
absorbed Iayer at=0 andX:a, reSpeCtiVely. % cos@is the lim- and (TllTZ) For C|arity reasons Onﬁll is marked Or(a); T2 prac-
:ithegs Vallllig“(? %EAS/%;C\’:&:l;tﬂan\?vrifcgeri‘\?;idthbg ;ht‘i"‘é‘?iiﬁd tically coincides withl ,. For the same reasons we have not plotted
.o =0; . . L~
width o?l;he wgtting layer on the c%rrespor?ding plana(;1 substrate igeparately horizontal dotted lines correspondinght, and AV,

not marked on this figure. The thin-dashed line approaches thglthough they differ in values. FA\ T, the thin-dashed line ap-

dashed line foll /T, . proaches the asymptote-1cosé whilel_lﬂoc.

) 5 and continuougFigs. 5b) and Gb)] transitions. Figures(s)
= S0, and 3b) correspond to co®<sing, i.e., T<T,, where
=— AV,— +2 \/— ’ ' AN
HLT sing LoaphVimvle)]+200s sing 0(T,)=(ml2)—¢. T, is thus identified as the filling tem-
perature for a wedge with the opening angle[22]. Figures

% le”{\/U;[%AV“)—O';;Avl‘FU((p) 6(a) an?l(?(b) cqrrgspond t(.)T>Tq,'. The dotted Ilnle repre-
I2 sentso,;AVy; its intersections with the plot oF,;AV(I)
determine, together with E@3.4), the equilibrium values of
~o(e)}. @9 oanal % ¢

Our purpose is to extract the line and the surface contribu- We start with the first-order transition case forT,

tions to the free energy in E€8.5) in the limit of largeaand  [Fig. S@] and consider the special limét— in which the

to discuss their nonanalyticities corresponding to the transilntegral on the right-hand sidéhs) of Eq. (3.4 diverges.

tions taking place in the system. This can be—at least his divergence occurs eiher because the integrand diverges

partially—achieved via the graphical analyses presented ber because the upper limit, of integration in Eq.(3.4) di-

low. verges. FoilT<T,_, only the first possibility can be realized;
Figures 5 and 6 display the potential differenceit happens fowr,;AV; “v(¢). Then the second term on the

cr;éAV(l) in the case of the first-ord¢Figs. 5a) and §a)] rhs of Eq.(3.5 remains finite. The first term is a product of
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two factors; the first factor grows linearly wita and the  (2a/sin¢)o,, for T<T, and by (2/sin@)[ gy, +o.p(Sine
second one decreases to zero. Thus the first term gives nocos®)] for T, see Eq(2.10. Now we see that also

contribution to the surface free energy; both terms contributehe line contribution which is absent in the thermodynamic

to the line free energy. It is clear from Fig(th that similar  analysis turns out to be nonanalyticalt T (). Thus to
behavior will be observed for the second-order transition agliscuss the line contributions which determme_among

well. others—the interfacial shape, one must go beyond the ther-

The situation changes far>T,, Figs. Ga) and 8b). In modynamic analysis. This will be done in Sec. IV.
the case of the first-order transitigfrig. 6(a)], there is a

competition between two solutions correspondinglto, (,) C. The wetting transition

and (ll’ 2)- Note that since both solutions fulfill the con- In order to discuss the wetting transition, it is necessary to

stra[ltgwen n Eq(3.4), the values OﬁV(Ll)_AV(IZ)_and compare the free energy[f] corresponding to the finite
AV(l1)=AV(l2) denoted asAV, and AV, respectively,  so|ytion with the free energl.. corresponding to the inter-
are different. The solutionT¢,T,) and the corresponding face removed infinitely far away from the substrate. This
free energy share the features discussed previously for thgifference is equal to
caseT<T, anda— . In particular, the free energy contains

df\?2  w(l)

UQB(&

divergence of the integral on the rhs of £§.4) is provided
by the diverging upper limit of integration. The first term on . .
the rhs of Eq.(3.5) can be rewritter{up to the @r/2— )2 wherew(l)=V(l) —o,z— 0,4 It can be rewritten with the

sing|’

(3.7

only the I|ne contribution. The soluﬂori{ I2) and the cor- _ a
responding free energy behave differently; in this case the F[f]—Fm=f_adX >
help of Eq.(3.3) as

termg as
A F[f]-F.= 2a I 20,5\ 2
2a0,4 Sine [aalg Vi—(1— cosd)]+[1— coshising];. [ 1- _Tw( 1)+20,4 W
(3.6 i
Thus for largea the first term in the above expression ceases f dl{\/‘f V)—o, V(l +o(e)
to be linear ina while the second term remains negative and
proportional toa. The integrand in the second term on the —u(e)}. (3.9

rhs of Eq. (3.5 also remains finite in this limit. Fofl

, the free energy corresponding to the solutidp, () In the case of the first-order potentiall), both contribu-
contams an additionalegativesurface contribution. Due to tions to the free-energy difference in E§.7) are positive at
this term, the solutionl(,1,) corresponds to the actual equi- Tw. Which means that the infinite solution is the stable one.
librium configuration. Since both solutions - 1('2) and At T, both contributions to the free-energy difference in Eq.

7T dtoth | fth (3. 8) are negative and so the finite solution is the stable one.
(11,12) correspond to the same value of the param@tene T, s the wetting transition temperatufe,(a,¢) is shifted

hasAV,>AV,. For a certain range of not too smallalues,  from T,, towardsT,,. The magnitude of this shift depends on
the differenceH[f]— H[f] may change sign depending on parameters and (p, and the following inequality holds:

the temperature. This marks the existence of the filling tem-
peratureT ,(a) such thatT ,(a)>T (<) =T,, at which the
transition between the two solutions takes place. The differ-
enceT(a)—T, decreases foa—; this behavior may be
looked upon as the analog of the Kelvin law for the capillary
condensation problem. In order to determine &héepen-
dence of T,(a)—T,, one has to perform the model-
dependent numerical analysis, which is postponed to futur?
publication. A similar kind of qualitative analysis shows that Ir

in the opposite limit, i.e., foa—0 one hasl ,(a)—T,,. For " Y -
= = . for a “strongly” corrugated substrate so that the filling tem-
small enough values of parametay the (1,,1,) solution peratureT,(a) lies below the spinodal temperatufie at
ceases to exist and only the solutidn (| ;) remains. There \hich the potential barrier im(l) disappears. The presence
is no filling transition in this case. of this mechanism leading to the change of the order of the
For a continuous transition, Fig(l®, there is only one  transition—which was pointed out {23] in the context of
solution (I 1,1,). The corresponding free energy contains foradsorption on the wedge-shaped substrate—depends on the
large a the negative surface contribution similarly as for the actual form of the effective potential(l). For certain mod-
first-order case discussed above. els of w(l), it may also be realized in the case of adsorption
The above results agree qualitatively with the conclusion®n the saw-shaped substrate.
of our thermodynamic analysis in Sec. Il in the case of the The above reasoning is not valid for the effective poten-
first-order transition. AT=T,,, the surface contributions to tial V(I) exhibiting the continuous transition. The continuous
the free energy are nonanalytical. They are given bywetting occurs at the same temperature as for the planar case.

T,<Tw(a,9)<T,. (3.9

The above result—although derived for the saw-shaped
substrate—should also hold for the first-order transitions on
other types of periodic and weakly corrugated substrates.

One should also pay attention to the possibility that the
st-order wetting transition on the planar substrate turns
into critical filling on the corrugated substrate. This happens
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When T,/T,, then I,,I,,l, increase indefinitely and T
o(l;)—0. As a consequence, one can neglect the potential

terms in Eq.(3.4) and derive the relation 1

a~(l_1—l_2)tango. (3.10
This relation becomes exact at=T,,. At this temperature g
the interface is flat and situated infinitely far away from the
substrate. 4
IV. ANALYTIC RESULTS FOR CONTINUOUS FILLING N
In this section we discuss the case when the effective
potentialV(l) corresponds to the critical wetting on the pla- o
-100 =50 0 50 100
nar substrate, g-lx
V(1) = 0gt 0 s+ Wor exp—1/€) +Ug exp( —21/), FIG. 7. The shapes of the-8 interface for different dimension-

(4.1) less temperatures approaching the temperdtare, which corre-

' sponds to the critical filling transition on the saw-shaped substrate.
where the parameter<0 measures the distance from the The three curves, in increasing order, correspond to the tempera-
planar substrate wetting point,=0, and the constants turest=1.2,t=1, andt=0.9, respectively.

W,,Ug are positive. The solution of EG3.2) has the follow-

ing form: andl_2 as functions of the reduced temperature; especially

TGO0=1o+ £ IN[1+A Ax)+ B )], @42 pronoun_cgd is the sharp increa_sequupon crossing the
(x)=lo+ & nl eXPX) XA, (42 wedge filling temperature=1. This means that the trace of
where the constantlg),\,A,B are determined by requiring the filling transition chracteristic for the adsorption in the

that I(x) fulfills Eq. (3.2 and the boundary conditions wed.ge is also present for the saw-shaped substrate, although
?(0+)=7(a‘)= —cote. The solutionl_(x) can be conve- not in such a singular form as for the wedge. Also the width

niently rewritten using the following dimensionless variables®' the adsorbed layer at=a, i.e., I, does not exhibit any
y=M\élcote, t=1/7,, 7,=—\2U0 Wy 2SIN Lo CoSe nonanalytic behavior near 1; see Fig. 8. A straightforward
LA T e e 0%ap "0 '

a—acotelé, y=xcotglt. a measures the dimensionless calculation shows that the free energyf] evaluated at

depth of the depression at its center and<0 denotes a =1tendsto a constant_farﬂoo; under the same conditions
characteristic temperature for the adsorption on the sawlikéhe first derivative of[f] with respect to the temperature
substrate. For large opening angles considered in this papdfows linearly witha. This behavior of the free energy in the
7, coincides with the wedge filling temperature up to thelimit a—« is compatible with our previous mean-field re-
terms 0¢r/2— ¢)2. t measures the dimensionless tempera-
ture:t>1 corresponds to temperature below the characteris-
tic temperaturer,,. Then

(y2—1)(y2—t?)=t2cosh 2(ya/2), (4.3

_ycoshyx) — sinhyx)

1 AL
(y*—1) sinh(ya)

T1(X)=lg+&In

+ycosf[y(x—a)]—_sinr[_y()(—a)] 44
(y?—1) sinh(ya)
and
|0:|,T—2g|n(%), (4.5
0 02 04 06 08 1 12 14 16 1.8t

wherel ;= —§ In(tcoseyo,g/2Uq sing). The solutions of -
Eq. (4.39—which serve as the input to E(ft.4—are param- FIG. 8. The widths of the adsorbed laylgrand! , as functions

etrized by the temperatureand the geometry of the sub- of the dimensionless temperaturd=or t\,0 bothl, andl, tend to
strate, i.e.a and ¢. The shape of the emerging 'mel’ffﬁie IS o with their difference kept constant and equalatan this figure
shown in Fig. 7 for different temperatures. Figure 8 shows a=10.
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sults obtained for the wedd@2]. On the other hand, upon
approaching the planar substrate wetting temperdatar@,
both I, and |, grow indefinitely, which reflects the wetting
transition taking place on this periodically corrugated sub-
strate.

An interesting insight into the structure of the interfacial
profile f(x) can be obtained by analyzing the scaling prop-
erties ofl (x) in the limit of largea for different temperature
regimes.

It follows from Eg. (4.4) that the film thicknessek, and

1, are given by
ya
y y+tan}‘(;)

[1=lg+&In — (4.6) o
(y°=1) FIG. 9. The scaling behavior ¢f, =f(0) as a function of for
different temperatures in the vicinity £ 1. Fort=1, | ,~a/2; for

t<1,l,~a. Fort>1, |, approaches the value corresponding to the
adsorption in the wedge.

09720 40 60 80 100 120 140
¢ ta

and

y[y—tan}{—g) substrate becomes covered by a macroscopically thick layer
T,=lg+£In 2 4.7 of the adsorbed phase. The detailed scenario of the filling
20 (y2—1) ’ ' transition depends on the substrate’s convexity properties.

Thermodynamic considerations show that for periodic sub-

where the value of parametg(t,g) is obtained by solving Strates which are piecewise convex, i.e., convex except for

Eq. (4.9). After substituting the relevant solutions into Eq. isolated points at which the substrate shape is nonanalytic,
(4.4), one obtains one has continuous growth of the adsorbed phase which—

with increasing temperature—fills the substrate’s depressions
starting from its bottom and terminating at its top. The sub-
£ In<L> for t>1 strate’s top position, i.ez=b(a), is reached by thex-B
t—1 interface at the wetting temperatufg,. On the other hand,
for periodic substrates which are piecewise concave, one has

h=l,+q adlz for t=12 (4.8 discontinuous growth. The-g interface jumps to the posi-
At el == for t<1 tion at the top of the substrate at the temperafiye T,, .
agt¢in 2 or ' For periodic substrate shapes lik¢x)=a[1— cos@x/a)],

which within each section contain both concave and convex
where the expressions in E4.8 hold for taexp(-ta) parts, the filling sqgnario corrgsponds to the jum_p of the in-
<(-1), (t>1) and taexp(a)<(1—t), (t<1), respec- terface to the position where it makes contact with the con-
velv. Thus fora. h i havior of. vex part of the substrate. Upon further increase of the tem-
tively. Thus fora—c the scaling behavior of, depends on e rayre, this jump is then followed by a continuous growth
the chosen temperature regime. Rorl, the value ofl;  of the interfacial position until the whole depression be-
approaches the width of the adsorbed layer in the wedge. F@omes filled.
t=<1, the value ofl ; grows linearly witha; the slope of this An interesting situation appears when—within each sec-
linear increase ig for t=1 and 1 fort<1. This change of tion of the substrate—there are more than one inflection
slope is visible in Fig. 9, which illustrates the scaling prop-point. This corresponds to varying convexity properties of
erties ofl, for different temperatures. the substrate, which are then reflected in the course of the
The scaling properties Cﬁz are different from those d_fl filling transition. [t consists of_Jumps followed by continuous
— , ) . growth after which another jump comes, etc. This highly
For t—0, l,—I, and |, itself increases 'Oga“thﬁ"_ca”y- nonuniversal scenario requires a detailed analysis, which is
Thus fort—0, bothl; andl, approact . ; I, —I,—¢a,i.e.,  postponed to a future publication.
f(0)—f(a)—0. The interface becomes flat and the system As far as the wetting transition is concerned, we argue

undergoes the continuous wetting transition. that its order is the same as in the case of the corresponding
planar substrate. The mesoscopic part of our analysis is fo-
V. SUMMARY cused on adsorption on a sawlike substrate, which is the

borderline case between piecewise convex and piecewise
Our main conclusion is that the complete scenario of adeoncave substrate shapes. When the substrate is chosen in
sorption on a corrugated substrate contains both the fillinguch a way that in the planar case it corresponds to the criti-
and the wetting transition. The filling transition correspondscal wetting, then the filling transition can be discussed to
to either partial or complete filling of the substrate’s depres-much extent analytically. Especially, we analyze the behav-
sions. Then follows the wetting transition at which the wholeior of the interfacial shape in the vicinity of the wedge-filling
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temperatureT , and we point at a very sharp but smooth observe that it is actually the line contribution to the free

change of the interfacial shape near this temperature. Wenergy that becomes nonanalyticTat(a). On the contrary,

also derive the scaling behavior of with respect to increas- the shift of the saw-shaped substrate wetting temperature

ing depression size for temperatures below and above thikw(&,¢) with respect to the wedge wetting temperatiige

special temperature. is such thatT,(a,¢)<T,. Thus one hasT,<T,(a)
When the substrate is chosen such that in the planar caseTw(a,¢)<Ty,.

it corresponds to the first-order wetting, then we show that

fche f|II|n_g transition on the penodlcglly corrugated substrate ACKNOWLEDGMENTS
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